

Can machine learning help improving environmental performance and its

indicators?

Gabriel JARRY

ACROPOLE

1. Operational Context

2. ML models

3. Metrics illustration

4. Next steps and conclusions

1. Operational Context

2. ML models

3. Metrics illustration

4. Next steps and conclusions

Operational context

Current trend to control pollutant emissions and noise

Limitation examples

Geometric CDO

Fuel Flow (kg/h)

Limitation examples

Geometric CDO

Level flight

Philosophy

Vertical Flight Efficiency

1. Operational Context

2. ML models

3. Metrics illustration

4. Next steps and conclusions

Proof of concept

Model

LSTM Neural Network

Input parameters

15pts every 4s (1min)

ground speed (kts),

Data Set

A320 15 000 Trajectories

> Expert Workshop Vertical Flight Efficiency

<u>Output</u> parameters

Fuel flow (kg/h) Engine N1 (RPM) Flaps and Gear position

Speed Brakes use (Noise ?)

Models error quantification

dgac

Parameter	Metric	Mean Score
Fuel Flow	Pearson Correlation	0.938
Fuel consumption	ME	3.8%
Landing Gear	Distance MAE	0.99NM
Flap Setting	Distance MAE	1.28NM
	Expert Workshop	

Vertical Flight Efficiency

1. Operational Context

2. ML models

3. Metrics illustration

4. Next steps and conclusions

★ dgac

Limitation examples

D S N A Geometric CDO

Complementary metrics enable a more precise impact estimate

Vertical Flight Efficiency

1. Operational Context

2. ML models

3. Metrics illustration

4. Next steps and conclusions

Real time extension for ATC (POC)

Atypical approach detection

dgac

Next step and improvments

ML Models

- Radar data Mode S
- Noise measurements
- Comparison with BADA IV

Metrics

- Abacus improvements
- Time interval (TOD)
- Large data set experimetations

Extensions

- Real time demonstrator
- Integration into optimization
 process

Conclusions

• Machine Learning could enables the improvement of system evaluation metrics such as environmental metrics

 Machine Learning could contribute to a collaborative ground/on-board improvement of the overall efficiency of the ATM system

Thank you for your attention !

Appendix : Generalization B737

dgac

DSNA

Parameter	Metric	Mean Score LFPO	Mean Score GMAD
Fuel Flow	Pearson Correlation	0.917	0.921
Fuel consumption	ME	4.35%	4.86%
Landing Gear	Distance MAE	1.23 NM	1.86NM
Expert Workshop Vertical Flight Efficiency			

Appendix : Generalization A330

Parameter	Metric	Mean Score LFPO
Fuel Flow	Pearson Correlation	0.930
Fuel consumption	ME	4.84%
Landing Gear	Distance MAE	1.63 NM
	Expert Workshop Vertical Flight Efficiency	